Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Freestanding Wide‐Bandgap Semiconductors Nanomembrane from 2D to 3D Materials and Their ApplicationsAbstract Wide‐bandgap semiconductors (WBGS) with energy bandgaps larger than 3.4 eV for GaN and 3.2 eV for SiC have gained attention for their superior electrical and thermal properties, which enable high‐power, high‐frequency, and harsh‐environment devices beyond the capabilities of conventional semiconductors. Pushing the potential of WBGS boundaries, current research is redefining the field by broadening the material landscape and pioneering sophisticated synthesis techniques tailored for state‐of‐the‐art device architectures. Efforts include the growth of freestanding nanomembranes, the leveraging of unique interfaces such as van der Waals (vdW) heterostructure, and the integration of 2D with 3D materials. This review covers recent advances in the synthesis and applications of freestanding WBGS nanomembranes, from 2D to 3D materials. Growth techniques for WBGS, such as liquid metal and epitaxial methods with vdW interfaces, are discussed, and the role of layer lift‐off processes for producing freestanding nanomembranes is investigated. The review further delves into electronic devices, including field‐effect transistors and high‐electron‐mobility transistors, and optoelectronic devices, such as photodetectors and light‐emitting diodes, enabled by freestanding WBGS nanomembranes. Finally, this review explores new avenues for research, highlighting emerging opportunities and addressing key challenges that will shape the future of the field.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.more » « less
-
Abstract Freestanding single‐crystalline nanomembranes have gained increasing attention as promising platforms for both fundamental research and advanced electronic applications. However, internal stress gradients arising from epitaxial strain within the oxide membranes often result in high crack density during fabrication, leading to unsatisfactory yield and limited reliability. Here, an elastically graded polymer (EGP) support that enables wafer‐scale crack‐free transfer of single‐crystalline oxide membranes are developed. The engineered elastic gradient within the EGP accommodates the internal strain of the oxide membrane, effectively minimizing crack formation during lift‐off. Notably, this ability to spatially control the interfacial stiffness between the polymer and the oxide film enables crack suppression under both tensile and compressive strain. This approach provides a robust and scalable route to producing high‐quality freestanding oxide membranes, paving the way not only for their integration into novel device architecture but also opening new avenues for scientific exploration of functional systems.more » « less
An official website of the United States government
